Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II.

نویسندگان

  • Wenyi Cao
  • Antonio Muñoz
  • Peter Palffy-Muhoray
  • Bahman Taheri
چکیده

Photonic-bandgap materials, with periodicity in one, two or three dimensions, offer control of spontaneous emission and photon localization. Low-threshold lasing has been demonstrated in two-dimensional photonic-bandgap materials, both with distributed feedback and defect modes. Liquid crystals with chiral constituents exhibit mesophases with modulated ground states. Helical cholesterics are one-dimensional, whereas blue phases are three-dimensional self-assembled photonic-bandgap structures. Although mirrorless lasing was predicted and observed in one-dimensional helical cholesteric materials and chiral ferroelectric smectic materials, it is of great interest to probe light confinement in three dimensions. Here, we report the first observations of lasing in three-dimensional photonic crystals, in the cholesteric blue phase II. Our results show that distributed feedback is realized in three dimensions, resulting in almost diffraction-limited lasing with significantly lower thresholds than in one dimension. In addition to mirrorless lasing, these self-assembled soft photonic-bandgap materials may also be useful for waveguiding, switching and sensing applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temperature effect on lasing from Penrose photonic quasicrystal

Temperature effect on lasing from a Penrose photonic quasicrystal made of low index contrast materials holographic polymer dispersed liquid crystals was investigated. A blue-shift of lasing peak was observed with increased temperature in the range of 25 °C~50 °C. The transmission spectra of Penrose photonic quasicrystal was studied through FDTD simulation, which showed a correlation between the...

متن کامل

Temperature Tunability of Dielectric/ Liquid Crystal / Dielectric Photonic Crystal Structures

Recently, photonic crystals doped with liquid crystal (LC) material havegained much research interest. In this article new ternary one-dimensional photoniccrystal introduced and studied. The liquid crystal layer of 5CB and 5PCH is sandwichedby two dielectric layers. For the first time, we use four structures SiO2/UCF35/CaF2,SiO2/5CB/CaF2, NFK51/UCF35/NPSK53 and NFK51/5CB/NPSK53. The effect ofte...

متن کامل

Tunable Defect Mode in One-Dimensional Ternary Nanophotonic Crystal with Mirror Symmetry

In this paper, the properties of the defect mode in the photonic band gap ofone-dimensional ternary photonic crystals containing high temperature superconductorlayer (SPCs) have been theoretically investigated. We considered the quasi-periodiclayered structures by choosing two order of ternary Thue-Morse structures with mirrorsymmetry. We investigated the transmission spectra of these structure...

متن کامل

Ultralow-threshold single-mode lasing based on a one-dimensional asymmetric photonic bandgap structure with liquid crystal as a defect layer.

In this Letter, we propose defect-mode lasing from a one-dimensional asymmetric photonic structure with dye-doped nematic liquid crystal as a central defect layer. The local field intensity of the distinguished single defect mode at the overlapped photonic band edges is drastically enhanced by the asymmetric structure consisting of two distinct multilayer photonic crystals. With high density of...

متن کامل

A New Method for Calculating Propagation Modes of a One Dimensional Photonic Crystal (RESEARCH NOTE)

Photonic band-gap (PBG) crystals offer new dimensions of freedom in controlling propagation of electromagnetic waves. The existence of stop-bands in the transmission characteristic of these crystals makes them a suitable element for the realization of many useful microwave and optical subsystems. In this paper, we calculate the propagation constant of a one-dimensional (1-D) photonic crystal by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nature materials

دوره 1 2  شماره 

صفحات  -

تاریخ انتشار 2002